ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
S. Varet, P. Dossantos-Uzarralde, N. Vayatis
Nuclear Science and Engineering | Volume 179 | Number 4 | April 2015 | Pages 398-410
Technical Paper | doi.org/10.13182/NSE14-07
Articles are hosted by Taylor and Francis Online.
For evaluated nuclear cross-section uncertainties, most standard approaches are based on experimental cross-section measurements, reflecting that these measurements have uncertainty on their own and, in particular, undetermined correlations. We propose here focusing on the estimation of experimental covariances and bypassing the direct empirical estimator, which cannot be used due to the small amount of available data. Because of the nonlinearity of experimental cross sections, an alternative method to the classical propagation error formula is presented. This method exploits a regression model of the experimental cross sections to generate pseudomeasurements and thereby allows an empirical estimation of experimental covariances. Moreover, thanks to a bootstrap, a quality measure for the estimation is provided. The empirical matrix estimation is then improved with shrinkage. The validity of the approach is confirmed through numerical experiments on a toy model. Finally, the procedure is applied to the real case of the 5525Mn nucleus.