ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Lightbridge to test uranium-zirconium fuel alloy in INL’s ATR
Lightbridge Corporation has fabricated samples of nuclear fuel materials made of an enriched uranium-zirconium alloy, matching the composition of the alloy that the company intends to use for its future commercial Lightbridge Fuel product. The fuel is designed to improve the performance, safety, and proliferation resistance of nuclear reactors, according to the company. The enriched coupon samples will now be placed into capsules for irradiation testing in Idaho National Laboratory’s Advanced Test Reactor.
Jeremy A. Roberts
Nuclear Science and Engineering | Volume 179 | Number 3 | March 2015 | Pages 333-341
Technical Note | doi.org/10.13182/NSE14-60
Articles are hosted by Taylor and Francis Online.
A high-order, transient transport method based on the response matrix formalism is developed for application to reactor kinetics problems. The method combines recent advances in both static and transient response matrix methods with an explicit response-based treatment of delayed neutron precursors first proposed in the 1970s. In addition, an orthogonal basis for the time variable based on point kinetics is proposed as an alternative to a strictly polynomial basis. The method is demonstrated on infinite medium problems, the results of which show that the method can be successfully applied to reactor kinetics problems with and without precursors.