ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Jeremy A. Roberts
Nuclear Science and Engineering | Volume 179 | Number 3 | March 2015 | Pages 333-341
Technical Note | doi.org/10.13182/NSE14-60
Articles are hosted by Taylor and Francis Online.
A high-order, transient transport method based on the response matrix formalism is developed for application to reactor kinetics problems. The method combines recent advances in both static and transient response matrix methods with an explicit response-based treatment of delayed neutron precursors first proposed in the 1970s. In addition, an orthogonal basis for the time variable based on point kinetics is proposed as an alternative to a strictly polynomial basis. The method is demonstrated on infinite medium problems, the results of which show that the method can be successfully applied to reactor kinetics problems with and without precursors.