ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Startup looks to commercialize inertial fusion energy
Another startup hoping to capitalize on progress the Department of Energy’s Lawrence Livermore National Laboratory has made in realizing inertial fusion energy has been launched. On August 27, San Francisco–based Inertia Enterprises, a private fusion power start-up, announced the formation of the company with the goal of commercializing fusion energy.
M. Dion, G. Marleau
Nuclear Science and Engineering | Volume 179 | Number 2 | February 2015 | Pages 186-198
Technical Paper | doi.org/10.13182/NSE13-90
Articles are hosted by Taylor and Francis Online.
A method is proposed to evaluate implicit sensitivity coefficients for several types of reactor lattices, including pressurized water reactors and CANDU (CANada Deuterium Uranium) reactors, with different resonant and light isotope contents. The implicit sensitivity of the multiplication factor, resulting from a variation of an isotope density through the self-shielded cross sections, is computed for different cases. The precision of the method, the importance of the implicit coefficients with respect to the total sensitivity, and the contributions of all the isotopes are discussed and compared for the different systems. We also show how to compute the sensitivity coefficients in the unresolved energy groups, where the details of the resonances are not known. An equivalent dilution model is used for the self-shielding calculations. Complete transport calculations, using a collision probability method, are also used to compute reference values for the implicit sensitivities.