ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Researchers use one-of-a-kind expertise and capabilities to test fuels of tomorrow
At the Idaho National Laboratory Hot Fuel Examination Facility, containment box operator Jake Maupin moves a manipulator arm into position around a pencil-thin nuclear fuel rod. He is preparing for a procedure that he and his colleagues have practiced repeatedly in anticipation of this moment in the hot cell.
M. Dion, G. Marleau
Nuclear Science and Engineering | Volume 179 | Number 2 | February 2015 | Pages 186-198
Technical Paper | doi.org/10.13182/NSE13-90
Articles are hosted by Taylor and Francis Online.
A method is proposed to evaluate implicit sensitivity coefficients for several types of reactor lattices, including pressurized water reactors and CANDU (CANada Deuterium Uranium) reactors, with different resonant and light isotope contents. The implicit sensitivity of the multiplication factor, resulting from a variation of an isotope density through the self-shielded cross sections, is computed for different cases. The precision of the method, the importance of the implicit coefficients with respect to the total sensitivity, and the contributions of all the isotopes are discussed and compared for the different systems. We also show how to compute the sensitivity coefficients in the unresolved energy groups, where the details of the resonances are not known. An equivalent dilution model is used for the self-shielding calculations. Complete transport calculations, using a collision probability method, are also used to compute reference values for the implicit sensitivities.