ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
John D. Bess, Leland M. Montierth, Oliver Köberl, Luka Snoj
Nuclear Science and Engineering | Volume 178 | Number 3 | November 2014 | Pages 387-400
Technical Paper | doi.org/10.13182/NSE14-13
Articles are hosted by Taylor and Francis Online.
Benchmark models were developed to evaluate 11 critical core configurations of the HTR-PROTEUS pebble bed experimental program. Various additional reactor physics measurements were carried out as part of this program; currently, only a total of 37 absorber rod worth measurements have been evaluated as acceptable benchmark experiments for cores 4, 9, and 10. Dominant uncertainties in the experimental Keff for all core configurations come from uncertainties in the 235U enrichment of the fuel, impurities in the moderator pebbles, and the density and impurity content of the radial reflector. Calculations of Keff with MCNP5 and ENDF/B-VII.0 neutron nuclear data are greater than the benchmark values but are within 1% and also within the 3σ uncertainty, except for core 4, which is the only randomly packed pebble configuration. Repeated calculations of keff with MCNP6.1 and ENDF/B-VII.1 are lower than the benchmark values but are within 1% (∼3σ), except for cores 5 and 9, which calculate lower than the benchmark eigenvalues by <4σ. The primary difference between the two nuclear data libraries is the adjustment of the absorption cross section of graphite. Simulations of the absorber rod worth measurements are within 3σ of the benchmark experiment values. The complete benchmark evaluation details are available in the 2014 edition of the International Handbook of Evaluated Reactor Physics Benchmark Experiments.