ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Taro Ueki
Nuclear Science and Engineering | Volume 178 | Number 1 | September 2014 | Pages 16-28
Technical Paper | doi.org/10.13182/NSE13-36
Articles are hosted by Taylor and Francis Online.
Fluctuation modeling of the macroscopic cross section is studied in the framework of a continuously distributed stochastic medium. In particular, spatial correlation is approached by fractional Brownian motion (FBM) and randomized Weierstrass function (RWF). Here, FBM is capable of modeling correlation due to coordinate increments while RWF has the same property as FBM on a small scale, is able to confine the influence of correlation within a certain range of increments, and is globally under a fixed variance. In numerical experiments, first flights of neutral particles are examined using Woodcock tracking. Results obtained indicate that the attenuation of an uncollided beam becomes slower than the exponential law of the corresponding nonstochastic homogeneous medium as the spatial correlation changes from negative to positive; this departure to the slower side is very small or negligible in the full antipersistency limit of negative correlation. It is also shown that the departure from the exponential law of attenuation is nearly negligible if the influence of correlation is confined within the mean free path (mfp) determined by the macroscopic cross section of the corresponding nonstochastic homogeneous medium. However, the mfp's for individual realizations of the medium distribute widely. FBM turns out not to be feasible for modeling positive correlation. Overall, RWF virtually eliminates the risk of negative values of the macroscopic cross section inherent in the FBM modeling.