ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Seconds Matter: Rethinking Nuclear Facility Security for the Modern Threat Landscape
In today’s rapidly evolving threat environment, nuclear facilities must prioritize speed and precision in their security responses—because in critical moments, every second counts. An early warning system serves as a vital layer of defense, enabling real-time detection of potential intrusions or anomalies before they escalate into full-blown incidents. By providing immediate alerts and actionable intelligence, these systems empower security personnel to respond decisively, minimizing risk to infrastructure, personnel, and the public. The ability to anticipate and intercept threats at the earliest possible stage not only enhances operational resilience but also reinforces public trust in the safety of nuclear operations. Investing in such proactive technologies is no longer optional—it’s essential for modern nuclear security.
Taro Ueki
Nuclear Science and Engineering | Volume 178 | Number 1 | September 2014 | Pages 16-28
Technical Paper | doi.org/10.13182/NSE13-36
Articles are hosted by Taylor and Francis Online.
Fluctuation modeling of the macroscopic cross section is studied in the framework of a continuously distributed stochastic medium. In particular, spatial correlation is approached by fractional Brownian motion (FBM) and randomized Weierstrass function (RWF). Here, FBM is capable of modeling correlation due to coordinate increments while RWF has the same property as FBM on a small scale, is able to confine the influence of correlation within a certain range of increments, and is globally under a fixed variance. In numerical experiments, first flights of neutral particles are examined using Woodcock tracking. Results obtained indicate that the attenuation of an uncollided beam becomes slower than the exponential law of the corresponding nonstochastic homogeneous medium as the spatial correlation changes from negative to positive; this departure to the slower side is very small or negligible in the full antipersistency limit of negative correlation. It is also shown that the departure from the exponential law of attenuation is nearly negligible if the influence of correlation is confined within the mean free path (mfp) determined by the macroscopic cross section of the corresponding nonstochastic homogeneous medium. However, the mfp's for individual realizations of the medium distribute widely. FBM turns out not to be feasible for modeling positive correlation. Overall, RWF virtually eliminates the risk of negative values of the macroscopic cross section inherent in the FBM modeling.