ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
Aaron M. Phillippe, James E. Banfield, Kevin T. Clarno, Larry J. Ott, Bobby Philip, Mark A. Berrill, Rahul S. Sampath, Srikanth Allu, Steven P. Hamilton
Nuclear Science and Engineering | Volume 177 | Number 3 | July 2014 | Pages 275-290
Technical Paper | doi.org/10.13182/NSE13-18
Articles are hosted by Taylor and Francis Online.
The Integrated Fuel Assessment IFA-432 experiments from the International Fuel Performance Experiments database were designed to study the effects of gap size, fuel density, and fuel densification on fuel centerline temperature in light water reactor fuel. An evaluation of nuclear fuel pin heat transfer in the FRAPCON-3.4 and Exnihilo codes for uranium dioxide (UO2) fuel systems was performed, with a focus on the densification stage (2.2 GWd/tonne UO2). In addition, sensitivity studies were performed to evaluate the effect of the radial power shape and approximations to the geometry to account for the thermocouple hole. The analysis demonstrated excellent agreement for rods 1, 2, 3, and 5 (varying gap thicknesses and density with traditional fuel), demonstrating the accuracy of the codes and their underlying material models for traditional fuel. For rod 6, which contained unstable fuel that densified an order of magnitude more than traditional, stable fuel, the magnitude of densification was overpredicted, and the temperatures were outside the experimental uncertainty. The radial power shape within the fuel was shown to have a significant impact on the predicted centerline temperatures, whereas the effect of modeling the fuel at the thermocouple location as either annular or solid was relatively negligible. This has provided an initial benchmarking of the pin heat transfer capability of Exnihilo for UO2 fuel with respect to a well-validated nuclear fuel performance code.