ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Radium sources yield cancer-fighting Ac-225 in IAEA program
The International Atomic Energy Agency has reported that, to date, 14 countries have made 14 transfers of disused radium to be recycled for use in advanced cancer treatments under the agency’s Global Radium-226 Management Initiative. Through this initiative, which was launched in 2021, legacy radium-226 from decades-old medical and industrial sources is used to produce actinium-225 radiopharmaceuticals, which have shown effectiveness in the treatment of patients with breast and prostate cancer and certain other cancers.
C. M. Cooling, M. M. R. Williams, E. T. Nygaard, M. D. Eaton
Nuclear Science and Engineering | Volume 177 | Number 3 | July 2014 | Pages 233-259
Technical Paper | doi.org/10.13182/NSE13-55
Articles are hosted by Taylor and Francis Online.
Previously, a point kinetics model of the Medical Isotope Production Reactor has been presented, which included representations of instantaneous power, delayed neutron precursors, fuel solution temperature, radiolytic gas content, and coolant temperature. This model has been extended to include the effects of a vertically discretized temperature profile with a mixing of heat energy by eddies, boiling, and condensation and an extended model of bubble velocity and radius. It is found that the most striking change to the behavior of the system is caused by the effects of steam, which provides a strong negative feedback that tends to depress average powers in cases where the fuel solution temperature rises above the saturation temperature but can also lead to large, sharp power peaks through steam exiting the system (which can remove a large amount of negative reactivity in a short amount of time). The overall effect, however, does not lead to any unbounded power excursions. Possibilities for further extension of the model include the modeling of the composition of the plenum gas and the modeling of global pressure and its effects.