ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
C. M. Cooling, M. M. R. Williams, E. T. Nygaard, M. D. Eaton
Nuclear Science and Engineering | Volume 177 | Number 3 | July 2014 | Pages 233-259
Technical Paper | doi.org/10.13182/NSE13-55
Articles are hosted by Taylor and Francis Online.
Previously, a point kinetics model of the Medical Isotope Production Reactor has been presented, which included representations of instantaneous power, delayed neutron precursors, fuel solution temperature, radiolytic gas content, and coolant temperature. This model has been extended to include the effects of a vertically discretized temperature profile with a mixing of heat energy by eddies, boiling, and condensation and an extended model of bubble velocity and radius. It is found that the most striking change to the behavior of the system is caused by the effects of steam, which provides a strong negative feedback that tends to depress average powers in cases where the fuel solution temperature rises above the saturation temperature but can also lead to large, sharp power peaks through steam exiting the system (which can remove a large amount of negative reactivity in a short amount of time). The overall effect, however, does not lead to any unbounded power excursions. Possibilities for further extension of the model include the modeling of the composition of the plenum gas and the modeling of global pressure and its effects.