ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Ik Kyu Park, Jong Hwan Kim, Seong Wan Hong
Nuclear Science and Engineering | Volume 176 | Number 3 | March 2014 | Pages 255-272
Technical Paper | doi.org/10.13182/NSE13-16
Articles are hosted by Taylor and Francis Online.
Heat losses, heat remnants, and solidified layer thickness were calculated using a single-sphere film-boiling model. Debris particles of the quenched TROI (Test for Real cOrium Interaction with water) experiments were the target of analyses. The single-sphere film-boiling model can provide the order of triggerability and exponential potential at fuel-coolant interactions of various melt materials. For the triggerability, a system with a small particle size and large thermal conductivity induces a larger heat loss and a more voided mixture, which means a less triggered system. The explosion potentials are dependent not upon the triggerability but upon the heat contents of the mixture melt particles that can participate in a steam explosion. The calculated solidified layer thickness ratio to the radius of the melt particle, defined as a fragility factor of a melt particle in this paper, also maintained consistency with the order of triggerability and was evaluated by the heat loss. The breakup sizes for various melt materials were analyzed with several types of breakup models. A dynamic breakup model to deal with transient velocities can explain the different breakup sizes of various melt materials.