ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Yukio Oyama, Kazuaki Kosako, Hiroshi Maekawa
Nuclear Science and Engineering | Volume 115 | Number 1 | September 1993 | Pages 24-37
Technical Paper | doi.org/10.13182/NSE93-A35519
Articles are hosted by Taylor and Francis Online.
Angular neutron flux spectra leaking from iron slabs with various thicknesses up to 600 mm have been measured by the time-of-flight technique. The results are compared with calculations by the MCNP Monte Carlo code and the DOT3.5 two-dimensional discrete ordinates code with the JENDL-3 nuclear data file and with ENDF/B-IV. In the DOT3.5 calculations, a cross-section set with a selfshielding correction factor is also applied to examine its effect. The results show that the MCNP calculations based on both files agree very well for the main part of the deeply penetrating neutron spectrum, but the DOT3.5 code without a self-shielding correction underestimates the high-energy flux and the flux in the resonance energy range with increasing slab thickness. The self-shielding correction factor improves the underestimation, but the calculated flux is still smaller than the MCNP calculation.