ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
T. K. Bierlein, D. R. Green
Nuclear Science and Engineering | Volume 2 | Number 6 | November 1957 | Pages 778-786
Technical Paper | doi.org/10.13182/NSE57-A35492
Articles are hosted by Taylor and Francis Online.
The maximum penetration of uranium into aluminum in the temperature range 200–390°C has been investigated. The maximum values for the penetration coefficient KT, determined from the relationship KT = x2/t, are 0.075, 0.50, and 6.1 × 10−6 in.2/hr at temperatures of 200, 250, and 390°C, respectively; the corresponding activation energy is 14,300 calories per mole. The utility of cathodically vacuum etching specimens to obtain clean metal surfaces prior to the diffusion anneal is demonstrated. Couples prepared in the temperature range investigated, 200–390°C, fracture by the application of tension between the aluminum and the adjacent UAl3 diffusion zone interface. Subsequent measurement of the maximum UAl3 peak heights above the initial uranium-aluminum interface assures a maximum value of the penetration coefficient. The investigation provides a necessary basis for interpreting the effect of irradiation on the diffusion rates of uranium into aluminum.