ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
T. J. Neubert, R. B. Lees
Nuclear Science and Engineering | Volume 2 | Number 6 | November 1957 | Pages 748-767
Technical Paper | doi.org/10.13182/NSE57-A35490
Articles are hosted by Taylor and Francis Online.
Fast neutron bombardment of graphite displaces carbon atoms to interstitial positions and produces lattice vacancies. Upon heating the interstitial disturbances become mobile, move to more stable positions and release stored energy. The thermal release of stored energy was investigated by relative specific heat measurements, which are described in detail. Data are presented which show the dependence of energy storage upon extent of neutron bombardment and upon temperature of bombardment. Activation energy spectra for the thermal release of stored energy are calculated. The general trends of the data are discussed. Estimates are made of the numbers of interstitial carbon atoms, interstitial carbon (C2) molecules, and lattice vacancies in a sample of low bombardment. It is suggested that annealing of irradiated graphite causes much of the interstitial material to reintegrate with the graphite lattice by filling lattice vacancies.