ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Mike Kramer: Navigating power deals in the new data economy
Mike Kramer has a background in finance, not engineering, but a combined 20 years at Exelon and Constellation and a key role in the deals that have Meta and Microsoft buying power from Constellation’s Clinton and Crane sites have made him something of a nuclear expert.
Kramer spoke with Nuclear News staff writer Susan Gallier in late August, just after a visit to Clinton in central Illinois to celebrate a power purchase agreement (PPA) with Meta that closed in June. As Constellation’s vice president for data economy strategy, Kramer was part of the deal-making—not just the celebration.
François Bachoc, Guillaume Bois, Josselin Garnier, Jean-Marc Martinez
Nuclear Science and Engineering | Volume 176 | Number 1 | January 2014 | Pages 81-97
Technical Paper | doi.org/10.13182/NSE12-55
Articles are hosted by Taylor and Francis Online.
This paper addresses the use of experimental data for calibrating a computer model and improving its predictions of the underlying physical system. A global statistical approach is proposed in which the bias between the computer model and the physical system is modeled as a realization of a Gaussian process. The application of classical statistical inference to this statistical model yields a rigorous method for calibrating the computer model and for adding to its predictions a statistical correction based on experimental data. This statistical correction can substantially improve the calibrated computer model for predicting the physical system on new experimental conditions. Furthermore, a quantification of the uncertainty of this prediction is provided. Physical expertise on the calibration parameters can also be taken into account in a Bayesian framework. Finally, the method is applied to the thermal-hydraulic code FLICA 4, in a single-phase friction model framework. It allows significant improvement of the predictions of FLICA 4.