ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
P. A. Rude, A. C. Nelson, Jr.
Nuclear Science and Engineering | Volume 7 | Number 2 | February 1960 | Pages 156-161
Technical Paper | doi.org/10.13182/NSE60-A29085
Articles are hosted by Taylor and Francis Online.
It is conventional practice in the design of nuclear reactors to introduce hot channel factors to allow for spatial variations of power generation and flow distribution and for manufacturing tolerances. The factors are presently considered to be cumulative; the over-all hot channel factor at a point in the reactor is the product of all the factors applicable at the point. This paper demonstrates a more exact method of determining and interpreting the combined as well as individual hot channel factors through the use of statistical methods.