ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Bernard S. Finn, James W. Wade
Nuclear Science and Engineering | Volume 7 | Number 2 | February 1960 | Pages 93-96
Technical Paper | doi.org/10.13182/NSE60-A29076
Articles are hosted by Taylor and Francis Online.
The effects of H2O contamination on lattices of natural uranium metal in D2O were measured in the exponential facility of the Savannah River Laboratory. The buckling changes associated with H2O contamination were determined for two lattices with moderator-to-fuel volume ratios of 12.3 and 14.6 over a range of H2O concentrations from 0.2 to 8.2 mol %. The agreement between calculated and experimental changes in buckling for these lattices was within ±25 × 10−6 cm−2. Similar measurements on seven other lattices with moderator-to-fuel ratios in the range from 31 to 212 were made for a change in the H2O concentration from 0.18 to 3.92 mol %. For these measurements the experimental change in buckling was about 15% greater than the calculated change.