ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
R. H. Szilard, G. C. Pomraning
Nuclear Science and Engineering | Volume 112 | Number 3 | November 1992 | Pages 256-269
Technical Paper | doi.org/10.13182/NSE92-A29073
Articles are hosted by Taylor and Francis Online.
A numerical discretization scheme, in both space and time, is considered for the equation of radiative transfer and its corresponding diffusion approximation. Numerical results are presented for radiation penetration into a cold slab driven by a constant incident surface intensity. A comparison of results is made among solutions obtained from the discretization of the radiative transfer equation, a flux-limited diffusion approximation, and the classical diffusion approximation. By numerically studying the properties of the flux-limited diffusion approximation, we conclude that the treatment of the nonlinearities in such a description can significantly affect the results. Different iteration strategies of such nonlinearities are discussed and benchmark data for the converged solution are presented in three different time regimes. Finally, we conclude from this analysis that flux limiting is an important factor in solving these types of problems and must be included in any diffusive description.