ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
R. H. Szilard, G. C. Pomraning
Nuclear Science and Engineering | Volume 112 | Number 3 | November 1992 | Pages 256-269
Technical Paper | doi.org/10.13182/NSE92-A29073
Articles are hosted by Taylor and Francis Online.
A numerical discretization scheme, in both space and time, is considered for the equation of radiative transfer and its corresponding diffusion approximation. Numerical results are presented for radiation penetration into a cold slab driven by a constant incident surface intensity. A comparison of results is made among solutions obtained from the discretization of the radiative transfer equation, a flux-limited diffusion approximation, and the classical diffusion approximation. By numerically studying the properties of the flux-limited diffusion approximation, we conclude that the treatment of the nonlinearities in such a description can significantly affect the results. Different iteration strategies of such nonlinearities are discussed and benchmark data for the converged solution are presented in three different time regimes. Finally, we conclude from this analysis that flux limiting is an important factor in solving these types of problems and must be included in any diffusive description.