ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
Paul Nelson, Fan Yu
Nuclear Science and Engineering | Volume 112 | Number 3 | November 1992 | Pages 231-238
Technical Paper | doi.org/10.13182/NSE92-A29071
Articles are hosted by Taylor and Francis Online.
Elements of the information-based complexity theory are computed for several types of information and associated algorithms for angular approximations in the setting of a one-dimensional model problem. For point-evaluation information, the local and global radii of information are computed, a (trivial) optimal algorithm is determined, and the local and global errors of a discrete ordinates algorithm are shown to be infinite. For average cone-integral information, the local and global radii of information are computed, the local and global errors of an associated discrete cones algorithm are computed, and it is noted that the global error tends to zero as the underlying partition is indefinitely refined. A central algorithm for such information and an optimal partition (of given cardinality) are described. It is further shown that the analytic first-collision source method has zero error (for the purely absorbing model problem). Implications of the restricted problem domains suitable for the various types of information are discussed.