ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
S. Cabral, G. Börker, H. Klein, W. Mannhart
Nuclear Science and Engineering | Volume 106 | Number 3 | November 1990 | Pages 308-317
Technical Paper | doi.org/10.13182/NSE90-A29059
Articles are hosted by Taylor and Francis Online.
Neutron production from the D(d,np) reaction is investigated for projectile energies between 5.34 and 13.29 MeV, and for emission angles of up to 15 deg. The breakup spectral angular cross section is deduced from neutron time-of-flight measurements normalized to the well-established D(d,n)3He angular cross section. The energy-integrated neutron yield from breakup reactions strongly increases with the projectile energy, and it exceeds the yield of monoenergetic neutrons at projectile energies of ≈9 MeV for neutron emission in a forward direction. The angular distributions behave very similarly for both reactions up to laboratory angles of 10 deg. In addition, it is possible to describe the breakup spectra for emission angles up to 10 deg with only one distribution unique to each energy when normalizing the spectra to the maximum energy of the breakup neutrons.