ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
No impact from Savannah River radioactive wasps
The news is abuzz with recent news stories about four radioactive wasp nests found at the Department of Energy’s Savannah River Site in South Carolina. The site has been undergoing cleanup operations since the 1990s related to the production of plutonium and tritium for defense purposes during the Cold War. Cleanup activities are expected to continue into the 2060s.
Abderrafi M. Ougouag , Hrabri L. Rajic
Nuclear Science and Engineering | Volume 100 | Number 3 | November 1988 | Pages 332-341
Technical Paper | doi.org/10.13182/NSE100-332
Articles are hosted by Taylor and Francis Online.
A self-consistent nodal method has been developed that directly computes the in-node flux shapes. The method renders the use of an approximation for the transverse leakages no longer necessary. These are obtained directly from the available interface net current shapes, interface flux shapes, and in-node fluxes. The order of the transverse leakage expansion on a set of Legendre polynomials is determined by the order chosen for the method. The results yielded are nearly as accurate (0.02% maximum relative assembly power error) as very fine-mesh benchmark solutions. A comprehensive numerical and analytical analysis of the transverse leakage approximation has been performed. It has been shown that the quadratic leakage approximation can be in error by many times its value. The success of the quadratic leakage approximation is attributed to its small effect on the nodal powers. The theory developed shows that the transverse leakages can have shapes that encompass hyperbolic sines and cosines, and hence that their approximation via quadratic expansions should not always be expected to be adequate. The ILLICO-HO method gives much more information (detailed fluxes and interface currents) than comparable finite difference as well as nodal benchmark solution methods.