ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Industry Update—February 2026
Here is a recap of recent industry happenings:
Supply chain contract signed for Aurora
Oklo, the California-based developer of the Aurora Powerhouse sodium-cooled fast-neutron reactor, has signed a contract with Siemens Energy that is meant to de-risk supply chain and production timeline challenges for Oklo. Under the terms, Siemens will design and deliver the power conversion system for the Powerhouse, which is to be deployed at Idaho National Laboratory.
K. S. Smith, K. R. Rempe
Nuclear Science and Engineering | Volume 100 | Number 3 | November 1988 | Pages 324-331
Technical Paper | doi.org/10.13182/NSE88-A29046
Articles are hosted by Taylor and Francis Online.
The QPANDA nodal models, which are embodied in the SIMULA TE-3 code, have been extensively tested and benchmarked. Comparisons to quarter-core PDQ depletion calculations demonstrate the high degree of accuracy with which power distributions are predicted, even though SIMULA TE-3 contains no user-adjusted normalizations. The QPANDA pin power reconstruction model is introduced, and comparisons (versus CASMO colorset and PDQ quarter-core calculations) demonstrate that accurate pin power distributions are obtained by modulating the intranodal power distributions with single-assembly CASMO pin power distributions. Comparisons of SIMULATE-3 calculations to measured reactor fission rate integrals are presented. Also, the overall accuracy of the CASMO-3 cross sections, the QPANDA nodal model, and the QPANDA pin power reconstruction model is demonstrated.