ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
G. C. Goswami, J. J. Egan, G. H. R. Kegel, A. Mittler, E. Sheldon
Nuclear Science and Engineering | Volume 100 | Number 1 | September 1988 | Pages 48-60
Technical Paper | doi.org/10.13182/NSE88-A29014
Articles are hosted by Taylor and Francis Online.
Differential cross sections have been measured at the University of Lowell for the ground and first two excited states of 232Th via the neutron time-of-flight technique. The following results are presented for neutron scattering cross sections: (a) excitation functions of 232Th in the incident energy range from 185 to 2400 keV for the 0+ ground state and the 2+, 49-keV state, and in the 480-to 2400-keV range for the 4+, 162-keV state; (b) angular distributions for the 0+ and 2+ states at 185 keV and for the 0+, 2+, and 4+ states at 550 keV. Level cross sections were obtained using these and previously measured angular distributions. The University of Lowell 5.5-MV pulsed Van de Graaff accelerator with a Mobley bunching system was employed to generate neutrons via the 7Li(p, n)7Be reaction. Metallic lithium targets were 8 to 10 keV thick, enabling an overall resolution of 15 to 20 keV to be maintained throughout the measurements. The scatterer was disk shaped. Details of data reduction and finite scatterer size effects are discussed. The experimental results are compared with theoretical results and ENDF/B-V.