ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
W. L. Filippone
Nuclear Science and Engineering | Volume 99 | Number 3 | July 1988 | Pages 232-250
Technical Paper | doi.org/10.13182/NSE88-A28995
Articles are hosted by Taylor and Francis Online.
SMART (simulation of many accumulative Rutherford trajectories) scattering theory is based on a scattering matrix designed to eliminate angular and possibly energy discretization errors. This is done without resorting to negative matrix elements. In effect, the true scattering law is replaced by one with fewer collisions but larger deflections per collision. The two scattering laws are equivalent, at least in space-independent calculations. To the extent that this equivalence holds true for space-dependent problems, the major numerical obstacle to electron transport modeling is removed. SMART scattering theory has been used in one-dimensional streaming ray and two-dimensional SN codes in lieu of Fokker-Planck or extended transport correction techniques, and in a one-dimensional discrete angle Monte Carlo code in place of the condensed history approach. Excellent results have been obtained.