ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Work advances on X-energy’s TRISO fuel fabrication facility
Small modular reactor developer X-energy, together with its fuel-developing subsidiary TRISO-X, has selected Clark Construction Group to finish the building construction phase of its advanced nuclear fuel fabrication facility, known as TX-1, in Oak Ridge, Tenn. It will be the first of two Oak Ridge facilities built to manufacture the company’s TRISO fuel for use in its Xe-100 SMR. The initial deployment of the Xe-100 will be at Dow Chemical Company’s UCC Seadrift Operations manufacturing site on Texas’s Gulf Coast.
Richard Madey and Harold Shulman
Nuclear Science and Engineering | Volume 28 | Number 3 | June 1967 | Pages 353-358
Technical Paper | doi.org/10.13182/NSE67-A28949
Articles are hosted by Taylor and Francis Online.
A sevenfold integral expression is derived for the absorbed dose rate from the uncollided flux of gamma rays at the center of a spherical shell shield bombarded by an omnidirectional flux spectrum of protons. The general formulation is reduced to a fourfold integral on the basis of simplifying assumptions. This simpler formulation assumes that the gamma rays are produced isotropically by an isotropic proton flux, that protons penetrating the shell are not deflected from their original direction of incidence, that the spectrum and yield of photons are independent of proton bombarding energy, and that both the incident proton spectrum and the range-energy relation for protons in matter have power-law representations. A sixfold intergral expression is derived for the absorbed dose rate from the once-collided flux of gamma rays at the center of a spherical shell shield bombarded by an isotropic flux spectrum of protons. The once-collided differential (in energy) flux of photons at the shell center is given by a fivefold integral expression.