ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Richard Madey and Harold Shulman
Nuclear Science and Engineering | Volume 28 | Number 3 | June 1967 | Pages 353-358
Technical Paper | doi.org/10.13182/NSE67-A28949
Articles are hosted by Taylor and Francis Online.
A sevenfold integral expression is derived for the absorbed dose rate from the uncollided flux of gamma rays at the center of a spherical shell shield bombarded by an omnidirectional flux spectrum of protons. The general formulation is reduced to a fourfold integral on the basis of simplifying assumptions. This simpler formulation assumes that the gamma rays are produced isotropically by an isotropic proton flux, that protons penetrating the shell are not deflected from their original direction of incidence, that the spectrum and yield of photons are independent of proton bombarding energy, and that both the incident proton spectrum and the range-energy relation for protons in matter have power-law representations. A sixfold intergral expression is derived for the absorbed dose rate from the once-collided flux of gamma rays at the center of a spherical shell shield bombarded by an isotropic flux spectrum of protons. The once-collided differential (in energy) flux of photons at the shell center is given by a fivefold integral expression.