ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Charles W. Townley, Neil E. Miller, Robert L. Ritzman, Richard J. Burian
Nuclear Science and Engineering | Volume 20 | Number 2 | October 1964 | Pages 171-179
Technical Paper | doi.org/10.13182/NSE64-A28931
Articles are hosted by Taylor and Francis Online.
Irradiation studies of Al2O3-, BeO, and pyrolytic-carbon-coated fuel particles have been carried out in the Battelle Research Reactor. Alumina-coated UO2 particles were found to be capable of a high degree of fission-gas retention during irradiations to at least 10 per cent bumup at temperatures up to 1100 C, The use of thick Al2O3 coatings (about 60 microns) and porous UO2 particles (about 80 per cent dense) was determined to be necessary to prevent cracking of the coatings at low temperatures. Coarse-grained beryllia coatings on UO2 particles have cracked during irradiations at 100 C and during thermal cycling in elevated temperature irradiations, but better performance is expected with fine-grained material. Failure of pyrolytic carbon coatings on UC2 particles was prevented in low-temperature irradiations by using thick coatings (>100 microns), but at elevated temperatures it was learned that the coatings had to be multilayered as well. Very promising results were obtained for pyrolytic-carbon-coated UO2 particles, good performance being observed over the temperature range of 100–1050 C.