ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
M. M. R. Williams
Nuclear Science and Engineering | Volume 19 | Number 2 | June 1964 | Pages 221-229
Technical Paper | doi.org/10.13182/NSE64-A28913
Articles are hosted by Taylor and Francis Online.
By associating the absorption cross section with the Laplace transform variable in the time domain, it is shown how Corngold's asymptotic solution for slowing down can be applied directly to the problem of a pulse of neutrons slowing down in an infinite medium. In this way, the effect of chemical binding and thermal motion on the slowing-down time, dispersion and spectrum shape have been determined. Some new results for these quantities have been obtained, and the limitations of the asymptotic method have been pointed out. A first-order correction to the slowing-down time has been deduced for a finite medium large enough to be characterized by a DB2 term.