ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Ronald W. Badgley, Robert E. Uhrig
Nuclear Science and Engineering | Volume 19 | Number 2 | June 1964 | Pages 158-163
Technical Paper | doi.org/10.13182/NSE64-A28904
Articles are hosted by Taylor and Francis Online.
The power spectral density of the neutron density of a reactor is frequency dependent and related to the reactor transfer function and the power spectral density of the input disturbance. For a critical reactor, a power-spectral-density measurement can be used to evaluate the ratio (β/) where β is the effective delayed-neutron fraction and the effective neutron lifetime. For subcritical operation, an evaluation of the reactor shutdown margin can be obtained by determining the quantity where k, the effective reproduction constant, can be determined if the effective neutron lifetime and effective delayed neutron fraction are known. The output power spectral density of the University of Florida Training Reactor, operating in the subcritical region, has been measured using a plutonium/beryllium source to provide the input disturbance. The data are then fitted by a least-squares method to a theoretical model to obtain the quantity