ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
R. H. Ritchie, H. B. Eldridge
Nuclear Science and Engineering | Volume 8 | Number 4 | October 1960 | Pages 300-311
Technical Paper | doi.org/10.13182/NSE60-A28860
Articles are hosted by Taylor and Francis Online.
The perturbation of a thermal neutron flux field by an absorbing foil is considered for the case of a foil of thickness t and of lateral dimensions ≫ L, where L is the diffusion length of thermal neutrons in the medium. The integral equation for “one-velocity” transport of neutrons in the medium containing the foil is solved by a variational method in which the “eigenvalue” is closely related to the foil activation. The results are compared with the predictions of the Bothe and Skyrme theories. The Bothe and Skyrme theories are compared for the case of the finite disk-shaped foil and are shown to differ primarily in the transport correction. This difference may be important in cases where L is not very large compared with the mean free path of neutrons in the medium. On the basis of these considerations, a new analytic approximation for the activation of a finite foil is proposed.