ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
General Matter to build Kentucky enrichment plant under DOE lease
The Department of Energy’s Office of Environmental Management announced it has signed a lease with General Matter for the reuse of a 100-acre parcel of federal land at the former Paducah Gaseous Diffusion Plant in Kentucky for a new private-sector domestic uranium enrichment facility.
Y. Bartal, S. Yiftah
Nuclear Science and Engineering | Volume 82 | Number 2 | October 1982 | Pages 162-180
Technical Paper | doi.org/10.13182/NSE82-A28699
Articles are hosted by Taylor and Francis Online.
The feasibility and relative merits of a quasi-time-dependent approach to burnup calculations is investigated. This method, which is shown to be practically equivalent to a true time-dependent approach, uses one iterative level less than the conventional method and is less liable to nonconvergence problems. The method has been formulated using the finite difference form of the neutron diffusion equation and is implemented in a computer code named TDB. Several one- and two-dimensional pressurized water reactor cores were analyzed using both proposed and conventional methods. The calculations show that the proposed method is about twice as fast as the conventional one with a relative accuracy of <5% in material power fractions and critical boron value.