ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Y. Bartal, S. Yiftah
Nuclear Science and Engineering | Volume 82 | Number 2 | October 1982 | Pages 162-180
Technical Paper | doi.org/10.13182/NSE82-A28699
Articles are hosted by Taylor and Francis Online.
The feasibility and relative merits of a quasi-time-dependent approach to burnup calculations is investigated. This method, which is shown to be practically equivalent to a true time-dependent approach, uses one iterative level less than the conventional method and is less liable to nonconvergence problems. The method has been formulated using the finite difference form of the neutron diffusion equation and is implemented in a computer code named TDB. Several one- and two-dimensional pressurized water reactor cores were analyzed using both proposed and conventional methods. The calculations show that the proposed method is about twice as fast as the conventional one with a relative accuracy of <5% in material power fractions and critical boron value.