ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Godzilla is helping ITER prepare for tokamak assembly
ITER employees stand by Godzilla, the most powerful commercially available industrial robot available. (Photo: ITER)
Many people are familiar with Godzilla as a giant reptilian monster that emerged from the sea off the coast of Japan, the product of radioactive contamination. These days, there is a new Godzilla, but it has a positive—and entirely fact-based—association with nuclear energy. This one has emerged inside the Tokamak Assembly Preparation Building of ITER in southern France.
Gung-Huei Chou, Jyh-Chen Chen
Nuclear Science and Engineering | Volume 127 | Number 2 | October 1997 | Pages 220-229
Technical Paper | doi.org/10.13182/NSE97-A28598
Articles are hosted by Taylor and Francis Online.
An analytical study is conducted of condensation heat transfer characteristics under reflux-cooling modes with both constant temperature and constant heat flux (CHF) at the inner wall of a single vertical tube. The effects of interfacial shear stress and convection on the reflux condensation heat transfer are examined analytically. The results indicate that interfacial shear retards the condensate flow and thickens the liquid film layer, which in turn decreases the condensation heat transfer coefficient (HTC). The dimensionless film thickness and local HTC with zero convection varies with an increase in the interfacial shear and has a remarkable effect on the condensation process, especially with a larger condensation length. However, the film Reynolds number has the opposite effect. Additionally, the interfacial shear thickens the film and retards the liquid flow relatively more distinctly for the CHF case. Finally, compared with the experimental data from previous study, the observed trend of the condensation heat transfer can be reasonably described by the present model at moderate film Reynolds numbers.