ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Gung-Huei Chou, Jyh-Chen Chen
Nuclear Science and Engineering | Volume 127 | Number 2 | October 1997 | Pages 220-229
Technical Paper | doi.org/10.13182/NSE97-A28598
Articles are hosted by Taylor and Francis Online.
An analytical study is conducted of condensation heat transfer characteristics under reflux-cooling modes with both constant temperature and constant heat flux (CHF) at the inner wall of a single vertical tube. The effects of interfacial shear stress and convection on the reflux condensation heat transfer are examined analytically. The results indicate that interfacial shear retards the condensate flow and thickens the liquid film layer, which in turn decreases the condensation heat transfer coefficient (HTC). The dimensionless film thickness and local HTC with zero convection varies with an increase in the interfacial shear and has a remarkable effect on the condensation process, especially with a larger condensation length. However, the film Reynolds number has the opposite effect. Additionally, the interfacial shear thickens the film and retards the liquid flow relatively more distinctly for the CHF case. Finally, compared with the experimental data from previous study, the observed trend of the condensation heat transfer can be reasonably described by the present model at moderate film Reynolds numbers.