ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
Leonid R. Pogosbekyan, Dmitrij A. Lysov
Nuclear Science and Engineering | Volume 121 | Number 2 | October 1995 | Pages 345-351
Technical Paper | doi.org/10.13182/NSE95-A28570
Articles are hosted by Taylor and Francis Online.
There is uncertainty with experimental data as well as with input data of theoretical calculations. The neutron distribution from the variational principle, which takes into account both theoretical and experimental data, is obtained to increase the accuracy and speed of neutronic calculations. The neutron imbalance in mesh cells and the discrepancy between experimentally measured and calculated functionals of the neutron distribution are simultaneously minimized. A fast-working and simple-programming iteration method is developed to minimize the objective functional. The method can be used in the core monitoring and control system for (a) power distribution calculations, (b) in- and ex-core detector calibration, (c) macro-cross sections or isotope distribution correction by experimental data, and (d) core and detector diagnostics.