ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Godzilla is helping ITER prepare for tokamak assembly
ITER employees stand by Godzilla, the most powerful commercially available industrial robot available. (Photo: ITER)
Many people are familiar with Godzilla as a giant reptilian monster that emerged from the sea off the coast of Japan, the product of radioactive contamination. These days, there is a new Godzilla, but it has a positive—and entirely fact-based—association with nuclear energy. This one has emerged inside the Tokamak Assembly Preparation Building of ITER in southern France.
Y. A. Chao, N. Tsoulfanidis
Nuclear Science and Engineering | Volume 121 | Number 2 | October 1995 | Pages 202-209
Technical Paper | doi.org/10.13182/NSE95-A28558
Articles are hosted by Taylor and Francis Online.
The conventional transverse integration method of deriving nodal diffusion equations does not satisfactorily apply to hexagonal nodes. The transversely integrated nodal diffusion equation contains nonphysical singular terms, and the features that appear in the nodal equations for rectangular nodes cannot be retained for hexagonal ones. A method is presented that conformally maps a hexagonal node to a rectangular node before the transverse integration is applied so that the resulting nodal equations are formally analogous to the ones for rectangular nodes without the appearance of additional singular terms. Utilizing the invariance of the Laplacian diffusion operator under conformal mappings, it is shown that the diffusion equation for a homogeneous hexagonal node can be transformed to the diffusion equation for an inhomogeneous rectangular node. The inhomogeneity comes in through a smoothly varying mapping scale function, which depends only on the geometry. The steps of conformal mapping from a hexagonal node to a rectangular node are given, and the mapping scale function is derived, evaluated, and applied to nodal equation derivations.