ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Y. A. Chao, N. Tsoulfanidis
Nuclear Science and Engineering | Volume 121 | Number 2 | October 1995 | Pages 202-209
Technical Paper | doi.org/10.13182/NSE95-A28558
Articles are hosted by Taylor and Francis Online.
The conventional transverse integration method of deriving nodal diffusion equations does not satisfactorily apply to hexagonal nodes. The transversely integrated nodal diffusion equation contains nonphysical singular terms, and the features that appear in the nodal equations for rectangular nodes cannot be retained for hexagonal ones. A method is presented that conformally maps a hexagonal node to a rectangular node before the transverse integration is applied so that the resulting nodal equations are formally analogous to the ones for rectangular nodes without the appearance of additional singular terms. Utilizing the invariance of the Laplacian diffusion operator under conformal mappings, it is shown that the diffusion equation for a homogeneous hexagonal node can be transformed to the diffusion equation for an inhomogeneous rectangular node. The inhomogeneity comes in through a smoothly varying mapping scale function, which depends only on the geometry. The steps of conformal mapping from a hexagonal node to a rectangular node are given, and the mapping scale function is derived, evaluated, and applied to nodal equation derivations.