ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
M. L. Williams, M. Asgari
Nuclear Science and Engineering | Volume 121 | Number 2 | October 1995 | Pages 173-201
Technical Paper | doi.org/10.13182/NSE95-1
Articles are hosted by Taylor and Francis Online.
A procedure is presented to obtain a continuous-energy representation of the neutron spectrum using one-dimensional discrete ordinates calculations with a combination of multigroup (MG) and pointwise (PW) nuclear data. This provides the capability of determining the fine-structure energy distribution of the angular flux and flux moments within the resonance range as well as the smoother spectrum in the high- and thermal-energy ranges. A new method called a submoment expansion is developed to accurately calculate the Legendre moments of the elastic scatter source for the PW transport calculation, and the coupling between the MG and PW calculations is discussed in detail. The continuous-energy flux spectra can be utilized as problem-dependent weighting functions to process self-shielded MG cross sections for reactor physics and/or criticality safety analysis. This calculational method has been implemented in a new PW transport code called CENTRM that can be executed as a module in the AMPX and SCALE computer code packages. An example application using ENDF/B-VI cross-section data to analyze critical benchmarks is presented.