ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
M. L. Williams, M. Asgari
Nuclear Science and Engineering | Volume 121 | Number 2 | October 1995 | Pages 173-201
Technical Paper | doi.org/10.13182/NSE95-1
Articles are hosted by Taylor and Francis Online.
A procedure is presented to obtain a continuous-energy representation of the neutron spectrum using one-dimensional discrete ordinates calculations with a combination of multigroup (MG) and pointwise (PW) nuclear data. This provides the capability of determining the fine-structure energy distribution of the angular flux and flux moments within the resonance range as well as the smoother spectrum in the high- and thermal-energy ranges. A new method called a submoment expansion is developed to accurately calculate the Legendre moments of the elastic scatter source for the PW transport calculation, and the coupling between the MG and PW calculations is discussed in detail. The continuous-energy flux spectra can be utilized as problem-dependent weighting functions to process self-shielded MG cross sections for reactor physics and/or criticality safety analysis. This calculational method has been implemented in a new PW transport code called CENTRM that can be executed as a module in the AMPX and SCALE computer code packages. An example application using ENDF/B-VI cross-section data to analyze critical benchmarks is presented.