ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
T. A. Wareing, W. F. Walters, J. E. Morel
Nuclear Science and Engineering | Volume 118 | Number 2 | October 1994 | Pages 122-126
Technical Note | doi.org/10.13182/NSE94-A28541
Articles are hosted by Taylor and Francis Online.
Recently, a new diffusion synthetic acceleration scheme was developed for solving the two-dimensional Sn equations in x-y geometry with bilinear-discontinuous finite element spatial discretization, by using a bilinear-discontinuous diffusion differencing scheme for the diffusion acceleration equations. This method differed from previous methods in that it is unconditionally efficient for problems with isotropic or nearly isotropic scattering. Here, the same bilinear-discontinuous diffusion differencing scheme, and associated multilevel solution technique, is used to accelerate the x-y geometry Sn equations with linear-bilinear nodal spatial differencing. It is found that for problems with isotropic or nearly isotropic scattering, this leads to an unconditionally efficient solution method. Computational results are given that demonstrate this property.