ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
Kazuo Shin, Hideo Hirayama
Nuclear Science and Engineering | Volume 118 | Number 2 | October 1994 | Pages 91-102
Technical Paper | doi.org/10.13182/NSE94-A28538
Articles are hosted by Taylor and Francis Online.
A new approximate expression for gamma-ray buildup factors of multilayered shields is proposed. The expression is formulated based on the vector form and considers the gamma-ray energy spectrum directly. It treats the gamma-ray transmission by a transmission matrix and the backscattering by an albedo matrix. Its capability of reproducing the buildup factors for multilayered shields is demonstrated by using double-layered shields composed of two materials of water, iron, and lead at 1 and 10 MeV. The data of three-layered shields of these materials are also very well reproduced. The mechanism of the density effect arising, which appears in the buildup factor for a point isotropic source, is clearly interpreted by the current method to be a geometrical effect. A correction factor for incorporating the density effect into the current expression is derived. The modified expression is successfully applied to buildup factors for a 0.5-MeV point isotropic source for two-layered shields of water and iron.