ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Godzilla is helping ITER prepare for tokamak assembly
ITER employees stand by Godzilla, the most powerful commercially available industrial robot available. (Photo: ITER)
Many people are familiar with Godzilla as a giant reptilian monster that emerged from the sea off the coast of Japan, the product of radioactive contamination. These days, there is a new Godzilla, but it has a positive—and entirely fact-based—association with nuclear energy. This one has emerged inside the Tokamak Assembly Preparation Building of ITER in southern France.
Han Gon Kim, Soon Heung Chang, Byung Ho Lee
Nuclear Science and Engineering | Volume 115 | Number 2 | October 1993 | Pages 152-163
Technical Paper | doi.org/10.13182/NSE93-A28525
Articles are hosted by Taylor and Francis Online.
The Optimal Fuel Shuffling System (OFSS) was developed for the optimal design of pressurized water reactor (PWR) fuel loading patterns. An optimal loading pattern is defined in which the local power peaking factor is lower than a predetermined value during one cycle and the effective multiplication factor is maximized to extract the maximum energy. The OFSS is a hybrid system in which a rule-based system, fuzzy logic, and an artificial neural network (ANN) are connected with each other. The rule-based system classifies loading patterns into two types by using several heuristic rules and a fuzzy rule. The fuzzy rule is introduced to achieve a more effective and faster search. Its membership function is automatically updated in accordance with the prediction results. The ANN predicts core parameters for the patterns generated from the rule-based system. A backpropagation network is used for fast prediction of the core parameters. The ANN and fuzzy logic can be used to improve the capabilities of existing algorithms. The OFSS was demonstrated and validated for cycle 1 of theKori-1 PWR.