ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
R. Roy, A. Hébert, G. Marleau
Nuclear Science and Engineering | Volume 115 | Number 2 | October 1993 | Pages 112-128
Technical Paper | doi.org/10.13182/NSE93-A28522
Articles are hosted by Taylor and Francis Online.
The integral transport equation is solved in periodic slab lattices in the case where a critical buckling search is performed. First, the angular flux is factorized into two parts: a periodic microscopic flux and a macroscopic form with no angular dependence. The macroscopic form only depends on a buckling vector with a given orientation. The critical buckling norm along with the corresponding microscopic flux are obtained using anisotropic collision probability calculations that are repeated until criticality is achieved. This procedure allows the periodic boundary conditions of slab lattices to be taken into account using closed-form contributions obtained from the cyclic-tracking technique, without resorting to infinite series of exponential-integral evaluations. Numerical results are presented for one-group heterogeneous problems with isotropic and anisotropic scattering kernels, some of which include void slit regions.