ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
Keisho Shirakata, Toshihisa Yamamoto, Toshikazu Takeda, Hironobu Unesaki
Nuclear Science and Engineering | Volume 98 | Number 2 | February 1988 | Pages 118-127
Technical Paper | doi.org/10.13182/NSE88-A28491
Articles are hosted by Taylor and Francis Online.
Cell homogenization methods for the neutronics analysis of the blanket region of a plate-type liquid-metal fast breeder reactor critical assembly are investigated, and an improved method is proposed, which calculates cell-averaged cross sections so as to preserve groupwise reaction rates in each cell in a multidrawer cell model. The present homogenization method has been applied to the analysis of the heterogeneous fast critical assembly ZPPR-13. It was found that the keff difference between homogeneous and heterogeneous fast critical assemblies was reduced from 0.4 to 0.2% Δk/k by using the present method.