ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Hawaii report recommends against nuclear development
A nuclear energy working group convened by the Hawaii State Energy Office (HSEO) and tasked with investigating the feasibility of bringing nuclear to the state recently released a report that concluded that—for now—nuclear is not right for Hawaii.
The bill: The HSEO was ordered to convene a nuclear energy working group by state Senate Concurrent Resolution 136, which was passed during last year’s legislative session. The task force was specifically charged with investigating the feasibility of advanced nuclear power technologies in the state, along with identifying barriers to and risks associated with deploying those technologies. Those benefits and risks were far reaching in scope, including regulatory, statutory, financial, social, and environmental factors.
John A. Bernard, Allan F. Henry, David D. Lanning
Nuclear Science and Engineering | Volume 98 | Number 2 | February 1988 | Pages 87-96
Technical Paper | doi.org/10.13182/NSE88-A28488
Articles are hosted by Taylor and Francis Online.
The “reactivity constraint approach” is described and demonstrated to be an effective and reliable means for the automatic control of power in nuclear reactors. This approach functions by restricting the effect of the delayed neutron populations to that which can be balanced by an induced change in the prompt population. This is done by limiting the net reactivity to the amount that can be offset by reversing the direction of motion of the automated control mechanism. The necessary reactivity constraints are obtained from the dynamic period equation, which gives the instantaneous reactor period as a function of the reactivity and the rate of change of reactivity. The derivation of this equation is described with emphasis on the recently obtained “alternate” formulation. Following a discussion of the behavior of each term of this alternate equation as a function of reactivity, its use in the design and operation of a nonlinear, closed-loop, digital controller for reactor power is described. Details of the initial experimental trials of the resulting controller are given.