ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Perpetual Atomics, QSA Global produce Am fuel for nuclear space power
U.K.-based Perpetual Atomics and U.S.-based QSA Global claim to have achieved a major step forward in processing americium dioxide to fuel radioisotope power systems used in space missions. Using an industrially scalable process, the companies said they have turned americium into stable, large-scale ceramic pellets that can be directly integrated into sealed sources for radioisotope power systems, including radioisotope heater units (RHUs) and radioisotope thermoelectric generators (RTGs).
Felix C. Difilippo, Ricardo M. Waldman
Nuclear Science and Engineering | Volume 61 | Number 1 | September 1976 | Pages 60-71
Technical Paper | doi.org/10.13182/NSE76-A28461
Articles are hosted by Taylor and Francis Online.
A model is developed to investigate the response of a coupled two-core reactor to a neutron pulse. Various coupled cores with symmetrical and asymmetrical configurations and compositions are studied. The fundamental spatial mode splits into two distinct decaying submodes. The reactivity of a coupled-core system is defined, and two methods are given for its measurement. The model is compared with results of pulsed-neutron experiments performed on a light-water-moderated, coupled, compact two-core reactor fueled with uranium of 90% 235U content and reflected by both light water and graphite in either symmetrical or asymmetrical configurations