ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
G. Longo, F. Saporetti
Nuclear Science and Engineering | Volume 61 | Number 1 | September 1976 | Pages 40-52
Technical Paper | doi.org/10.13182/NSE76-A28459
Articles are hosted by Taylor and Francis Online.
Information on the production of high-energy photons, due to (n, γ) reactions for neutron energies up to ∼20 MeV, may be useful in reactor technology. Use of theoretical estimates is required to make up for the lack of measured data. For this purpose, the semidirect capture model is used. The model is refined by introducing a volume form for both the real and the imaginary parts of the nucleon-nucleus coupling interaction and its validity checked on available experimental (n, γ) data. The effective cross sections for the production of 8- to 20-MeV photons are calculated for the 140Ce(n, γ) and 93Nb(n, γ) reactions considering three different distributions of 4- to 15-MeV incident neutrons.