ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
G. Longo, F. Saporetti
Nuclear Science and Engineering | Volume 61 | Number 1 | September 1976 | Pages 40-52
Technical Paper | doi.org/10.13182/NSE76-A28459
Articles are hosted by Taylor and Francis Online.
Information on the production of high-energy photons, due to (n, γ) reactions for neutron energies up to ∼20 MeV, may be useful in reactor technology. Use of theoretical estimates is required to make up for the lack of measured data. For this purpose, the semidirect capture model is used. The model is refined by introducing a volume form for both the real and the imaginary parts of the nucleon-nucleus coupling interaction and its validity checked on available experimental (n, γ) data. The effective cross sections for the production of 8- to 20-MeV photons are calculated for the 140Ce(n, γ) and 93Nb(n, γ) reactions considering three different distributions of 4- to 15-MeV incident neutrons.