ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Ariz. governor vetoes “fast track” bill for nuclear
Gov. Katie Hobbs put the brakes on legislation that would have eliminated some of Arizona’s regulations and oversight of small modular reactors, technology that is largely under consideration by data centers and heavy industrial power users.
Weston M. Stacey, Jr.
Nuclear Science and Engineering | Volume 47 | Number 1 | January 1972 | Pages 29-39
Technical paper | doi.org/10.13182/NSE72-A28418
Articles are hosted by Taylor and Francis Online.
The influence of wide scattering resonances on group-averaged uranium and plutonium resonance cross sections and on group elastic removal cross sections is examined; the consequences for a Bondarenko-type LMFBR multigroup cross-section scheme are discussed. An analytical expression is derived for a constant effective cross section which adequately accounts for the sodium resonance in the computation of group-averaged uranium and plutonium resonance cross sections. Analytical expressions are derived for the group elastic removal cross sections, also. These latter are superior to the Bondarenko prescriptions in that they account for the location of a scattering resonance within a group and thus account for both the relative probability that a neutron scattered in the resonance will be scattered out of the group and for the relative flux shape within the group. The composition dependence of these expressions is shown to be characterized by a single parameter. Numerical results are presented for compositions that are typical of proposed LMFBRs.