ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
New coolants, new fuels: A new generation of university reactors
Here’s an easy way to make aging U.S. power reactors look relatively youthful: Compare them (average age: 43) with the nation’s university research reactors. The 25 operating today have been licensed for an average of about 58 years.
J. Lachkar, J. Sigaud, Y. Patin, G. Haouat
Nuclear Science and Engineering | Volume 55 | Number 2 | October 1974 | Pages 168-187
Technical Paper | doi.org/10.13182/NSE74-A28205
Articles are hosted by Taylor and Francis Online.
Differential production cross sections for gamma rays from the 56Fe(n,n’y) reactions are presented for incident-neutron energies between 2.5 and 14.1 MeV. The reactions are studied at 11 neutron energies using pulsed beam techniques with the D(d, n)3He reaction and associated particle method with the T(d,n)4He reaction as neutron sources and using a sample of natural iron. The excitation functions of 17 gamma-ray transitions were measured between 4.8- and 8.8-MeV incident energies in nine 0.5-MeV steps at an angle of 90 deg. Angular distributions of 13 prominent gamma rays were also measured at 8.8-MeV neutron energy and for the 846.8- and 1238.3-keV gamma rays at 2.5- and 14.1-MeV neutron energies.