ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Perpetual Atomics, QSA Global produce Am fuel for nuclear space power
U.K.-based Perpetual Atomics and U.S.-based QSA Global claim to have achieved a major step forward in processing americium dioxide to fuel radioisotope power systems used in space missions. Using an industrially scalable process, the companies said they have turned americium into stable, large-scale ceramic pellets that can be directly integrated into sealed sources for radioisotope power systems, including radioisotope heater units (RHUs) and radioisotope thermoelectric generators (RTGs).
W. J. Garland, A. A. Harms, J. Vlachopoulos
Nuclear Science and Engineering | Volume 55 | Number 2 | October 1974 | Pages 119-128
Technical Paper | doi.org/10.13182/NSE74-A28202
Articles are hosted by Taylor and Francis Online.
The concept of an efficient temporal transformation is introduced in solving stiff space-time equations encountered in nuclear reactor transients analysis. The multigroup diffusion equations are employed for the basic system description. Approximate solutions are found analytically and corrections are made using the alternating direction implicit method to solve the finite difference equations resulting from the transformation. The conditions for stability and convergence of this technique are discussed and the method is illustrated by a two-group two-dimensional analysis of a CANDU-BLW nuclear reactor cell. This method described here appears particularly appropriate immediatel following system perturbations but before the dominant temporal trend has been established.