ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
R. A. Karam, W. Y. Kato
Nuclear Science and Engineering | Volume 52 | Number 2 | October 1973 | Pages 201-208
Technical Paper | doi.org/10.13182/NSE73-A28189
Articles are hosted by Taylor and Francis Online.
Systematic errors responsible for the large discrepancy between the measured and calculated central reactivity coefficients were examined. These errors were narrowed to two sources: the normalization integral (or perturbation denominator) and the conversion factor of inhour, or dollars, to Δk/k units. The magnitude of both sources of error is uniquely determined by the ratio of the measured-to-calculated normalization integral when the measurement is carried out using the 252 Cf source-reactivity method. The measured-to-calculated normalization integral ratios for ZPR-6 Assemblies 6A and 7, two typical demo-plant-size Liquid Metal Fast Breeder Reactor criticals, were 1.19 and 1.21, respectively. The magnitude of this discrepancy is essentially the same as that found for the central reactivity coefficient. Analysis of the available fission rate distribution in both assemblies indicates that the calculated normalization integral may be underestimated by 6 to 8% and that the remainder of 10 to 14% must come from the conversion factor. The delayed-neutron data of Krick and Evans, when used with the appropriate average number of neutrons per fission in each assembly, yield conversion factors 9 to 13% higher than the delayed-neutron data of Keepin. This would provide the explanation of the central reactivity discrepancy. Unfortunately, the method of calculating βeff could also produce errors of this magnitude even if one has an absolutely correct set of delayed-neutron fractions. More definitive measurements of the delayed-neutron fractions of pertinent isotopes, as a function of the incident neutron energy, are needed. In addition, measurements of βeff in various assemblies by different methods are required.