ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
M. M. R. Williams
Nuclear Science and Engineering | Volume 26 | Number 2 | October 1966 | Pages 262-270
Technical Paper | doi.org/10.13182/NSE66-A28168
Articles are hosted by Taylor and Francis Online.
The time and space eigenvalues of the Boltzmann equation have been obtained, particular attention being given to those eigenvalues which lie close to the limit point. This has been possible by the use of a synthetic kernel, which converts the usual integral equation to a differential one: the solution of this equation is obtained by the W.K.B. method. Results have been obtained for the infinite and finite medium time eigenvalues in the gas model approximation. The eigenvalues of the scattering operator have been shown to be infinite in number—also for the gas model. For the space eigenvalues it has been shown that, for a proton gas, only the fundamental exists, all higher eigenvalues are absent. It is found that as the mass of the gas increases, more space eigenvalues appear, but for any gas of finite mass these are finite in number.