ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
James R. Sheff, Robert W. Albrecht
Nuclear Science and Engineering | Volume 26 | Number 2 | October 1966 | Pages 207-221
Technical Paper | doi.org/10.13182/NSE66-A28163
Articles are hosted by Taylor and Francis Online.
The theory of space-dependent stochastic fluctuations is applied to several specific geometries to illustrate the space-dependence of the correlation and spectral-density functions. One-energy-group diffusion theory is used throughout to avoid clouding the geometric effects with other effects and to simplify the calculations. The first calculations are made in the infinite medium. The resulting cross-correlation and cross-spectral-density functions are shown to yield auto-correlation and spectral-density functions which differ strikingly from the usual point-reactor result. It is shown, however, that the point-reactor result is identical to the result obtained in an infinite reactor with a uniformly distributed detector. The effect of boundaries upon the fluctuations is examined from both the point of view of a finite detector and systems involving one or more boundaries. The case of the unreflected homogenous cubical reactor is solved. The results of cross-correlation and spectral-density calculations are displayed. The special case of the auto-correlation and spectral-density functions is compared to the point-reactor or space-independent result to show that significant departure from space independence is to be expected if detectors are placed away from axes of symmetry. This latter result obtains even when the extraneous source distribution is assumed to be fundamental mode.