ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
A. Leonard, Joel H. Ferziger
Nuclear Science and Engineering | Volume 26 | Number 2 | October 1966 | Pages 170-180
Technical Paper | doi.org/10.13182/NSE66-A28159
Articles are hosted by Taylor and Francis Online.
Our earlier treatment of the energy-dependent transport equation is extended to include the case in which cross sections are functions of energy. The technique again consists of finding solutions to the homogeneous transport equation after expansion in terms of a complete set of functions in the energy variable. Unlike the problem treated earlier, the full-range completeness theorem for these eigenfunctions requires the solution of a coupled set of singular integral equations. This solution is effected by a generalization of a trick used by Case and is applied to the problem for the infinite-medium Green's function. Numerical results are given for a heavy gas model. The half-range completeness theorem, which may be applied to half-space and finite slab problems, is proven in a companion paper.