ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Tsutomu Hoshino, Jiro Wakabayashi, Shigenori Hayashi
Nuclear Science and Engineering | Volume 23 | Number 2 | October 1965 | Pages 170-182
Technical Paper | doi.org/10.13182/NSE65-A28142
Articles are hosted by Taylor and Francis Online.
An expression different from the conventional modal expansion about space-dependent linear system kinetics is proposed. The solution is expressed in the form of a Laplace-transformed source transfer function. The Taylor expansion of the function in ‘s’ (the variable in the transformed domain) is obtained by solving the related stationary equations. The series is approximately continued to the simple form of the transfer function such as the first-order lag or the transport lag expression. In this method, it is not necessary to solve the eigenvalue problem directly. This solution contains the contribution from the higher modes and gives a practical approximation in a simple form, even if the response includes much higher modes. A numerical example is shown. This method is also applicable to general linear distributed constant systems. Some applications to coupled reactor theory and to thermalization kinetics are mentioned.