ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
A. Jankowiak, F. Jorion, C. Maillard, L. Donnet
Nuclear Science and Engineering | Volume 160 | Number 3 | November 2008 | Pages 378-384
Technical Paper | doi.org/10.13182/NSE160-378
Articles are hosted by Taylor and Francis Online.
This study describes the preparation and characterization of Pu0.5Am0.5O2-x-MgO ceramic/ceramic (cercer) composites with 20 and 30 vol% of Pu0.5Am0.5O2-x. The sintered materials demonstrated very different reduction behavior when exposed to a reducing sintering cycle. The composites were studied by combined X-ray diffraction (XRD) and oxygen-to-metal ratio measurements and exhibited various amounts of body-centered-cubic (bcc) and face-centered-cubic (fcc) phases corresponding to different reduction states of the mixed actinide oxide. The fcc phases correspond to a near stoichiometry phase while the bcc phases are attributed to most reduced phases, which demonstrate a greater similarity with the Am2O3 bcc phase. The XRD results suggest a reduction of Am prior to Pu, which explains this greater similarity. In addition, the 30 vol% composite contains 65 wt% of the bcc phase while the 20 vol% composite exhibits only 29 wt%. This result can be explained by the percolation theory when applied to the oxygen diffusivity and indicates that a threshold value for Pu0.5Am0.5O2-x content in the cercer composite exists where the reduction of the mixed oxide significantly increases.