ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
A. P. Grunwald
Nuclear Science and Engineering | Volume 12 | Number 3 | March 1962 | Pages 419-423
Technical Paper | doi.org/10.13182/NSE62-A28093
Articles are hosted by Taylor and Francis Online.
Helium leak detection and other nondestructive tests of closure welds proved unreliable for the EBR-II fuel rods. A system was developed which used pressure decay in a miniature pressure chamber as a measure of weld leakage. Analysis of pressure decay rate permitted determination of leak size. Spurious signals resulting from leakage of the test system produced an abnormal ultimate test chamber pressure. These were readily differentiated from fuel rod leaks. The sensitivity of the tests is approximately 5 × 10−6 standard cubic centimeters of helium per second. Higher sensitivity may be obtained by variation of the technique and of the equipment. The influence of vapor contamination of leak capillaries was investigated and correlated with surface tension phenomena. The test has been successfully applied to a variety of fuel elements and incapsulated specimens with small internal void spaces.