ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
M. M. R. Williams
Nuclear Science and Engineering | Volume 160 | Number 2 | October 2008 | Pages 253-260
Technical Paper | doi.org/10.13182/NSE160-253
Articles are hosted by Taylor and Francis Online.
The resonance integrals and associated temperature coefficients in a mixture of graphite and randomly dispersed grains of ThO2 are calculated. Two methods of dealing with the random distribution of grains are used. The first is one developed by Lane, Nordheim, and Sampson, which is based upon a random Dancoff factor, and the second uses the dichotomic Markov process. The numerical results are compared for a range of grain sizes and ranges of temperature. The differences in the two methods do not exceed 4% for resonance integrals and 2.5% for temperature coefficients. Bearing in mind the radically different stochastic procedures involved, it is remarkable and useful to know that the results are so insensitive to the stochastic model used. In addition we give a measure of the variance in the results.